RECOGNISING ACHIEVEMENT

2853 Chemistry: Polymers, Proteins and Steel

January 2004
Mark Scheme

The following annotations may be used when marking:

```
X = incorrect response (errors may also be underlined)
^ = omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con = contradiction (in cases where candidates contradict themselves in the
    same response)
sf = error in the number of significant figures
```

Abbreviations, annotations and conventions used in the Mark Scheme:

I	$=$ alternative and acceptable answers for the same marking point
$;$	$=$ separates marking points
NOT	$=$ answers not worthy of credit
()	$=$ words which are not essential to gain credit
$\overline{\text { ecf }}$ (underlining)	$=$ key words which must be used
AW	$=$ allow error carried forward in consequential marking
ora	$=$ alternative wording
	$=$ or reverse argument

Question	Expected Answers	Marks
1a	2 from: benzene ring; carboxyl/carboxylic acid; amine	2
bi	mirror image	1
bii	optical	1
biii	It has a chiral centre/asymmetric carbon/ carbon attached to four different groups;	1
ci	A.Only molecules of a specific shape work Plus 4 from B.enzyme has an active site; C.with a specific shape; D.because of its tertiary structure/way it folds; E.folding depends on the sequence of amino acids; F.H bonds /electrostatic forces hold (substrate \&) enzyme together; G.substrate/reacting molecule fits into enzyme (active site)/ complementary shape/enzyme substrate complex formed; Discussion of denaturing scores 4 max	5
cii	Phenol	1
d	 or Only amide link needs to be full structural Amide link(1); Rest;	2
e	 (or $\mathrm{NH}_{3} \mathrm{Cl}$) H^{+}is removed (from solution) Accept: acts like a buffer/ a base/accepts a proton/ COO^{-}reacts with H^{+}	2
		15

Question	Expected Answers	Marks
2a	Ethyl methanoate $=2 \quad$ yl and oate $=1$	2
bi	$\begin{array}{ll} \hline 1.2 & =\mathrm{R}-\mathrm{CH}_{3}(1) \\ 3.6 & =\mathrm{O}-\mathrm{CH}_{2}-\mathrm{R}(1) \\ 4.5 & =\mathrm{R}-\mathrm{OH}(1) \\ \hline \end{array}$ No R groups 2 max	3
bii	 (1) ethanol (1)	2
biii	 Product Z (1) methanoic acid (1) NB Allow 2 marks if bii and iii reversed but otherwise completely correct	2
c	M_{r} ester= 74 (1) Amount of ester $=8.87 / 74(1)=0.120 \mathrm{~mol}$ ecf Multiplication by 1000/500 to give concentration(1) Accept reverse working	3
di	All points plotted correctly 2 marks 1 error $=1$ mark 2 errors $=0$ Smooth curve through points 1 mark	3
dii	2 half lives marked correctly on the graph (1); time labelled correctly (1); Allow 1 mark for one half life correctly drawn and labelled	2
diii	Constant half life	1
div	Draw a tangent to the curve; At $t=0 /$ the start; Find gradient owtte	3
e	$\frac{4.60 \times 10^{-5}}{0.240}-\quad(1)=1.92 \times 10^{-4}(1) \quad \text { units } \mathrm{s}^{-1}(1)$	3
	Total	24

3 i	$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ Any form of structure correct functional groups(1) ; correct number of carbons between functional groups, (aliphatic should have correct number of H's)(1)	2
aii	 Correct sequence of groups as shown (1) 5 carbon linkages either side (1) ecf from above Allow condensed structure	2
bi	Acyl chloride	1
bii	Condensation polymerisation; A small molecule (HCl) is eliminated (when monomers join) not water	2
c	more hydrogen bonds in nylon-6,6; strongest / intermolecular forces/hydrogen bonds between functional groups; shorter (hydro)carbon chains in nylon-6,6 (or monomer 2) / more functional groups in nylon-6,6 ORA; carbon chains between functional groups /in both monomers are the same length in nylon-6,6/functional groups line up more regularly ORA; therefore more energy is required to separate the chains/overcome the intermolecular forces when it melts;	4
	Total	11

Question	Expected Answers	Marks
4a	Make up to known volume with water; Add acid (must be sulphuric if named); *Alternative: Make up to a known volume with dilute acid scores 2* Until first permanent pink colour - not with indicator; 3 from Filter solution; Wash with water; Dilute stock solution; Pipette sample; Add MnO_{4} - from a burette Repeat QWC 2 consecutive sentences grammatically correct with no spelling mistakes.	6 +1
b	$\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+} \rightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ Equation (1); Balancing (not electrons) (1)	2
c	$\mathrm{Mr} \mathrm{FeSO} 4=152$ (1); Mass of $\mathrm{FeSO}_{4}=106.4 \mathrm{~g}$ (1); Percentage $=106.4 / 1000 \times 100 \%(1)=11 \%$ Answer rounded to 2 sf (1) Ecf throughout	4
di	Octahedral shape; Water molecules bonded via oxygen atoms only (no ambiguous attachments)	2
dii	Lone pair/non bonding pair of electrons	1
diii	6	1
ei	(Dirty) green (1); precipitate (1)	2
eii	$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})$ Balanced equation (1) State symbols (1) (ignore spectators)	2
eiii	Oxidation has taken place/ reacts with oxygen (precipitate) turns red/brown; $\mathrm{Fe}^{3+} /$ (hydrated) iron III oxide / iron III hydroxide formed	3
f	Hexadentate/ polydentate	1
gi	Ligand exchange/displacement/substitution Allow nucleophilic substitution	1
gii	```\[K_{\text {stab }}=\left[\frac{\left[\mathrm{Fe}(\mathrm{edta})^{2}{ }^{2}\right]}{\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}\right]}\left[\mathrm{edta}^{4}\right]\right. \] products /reactants (1) square brackets - charges must be inside concentration brackets(1)```	2
	Total	28

Question	Expected Answers	Marks
5ai	$\mathrm{Cd} \rightarrow \mathrm{Cd}^{2+}+2 \mathrm{e}^{-}$	1
aii	It is less positive/ more negative than the nickel electrode	1
b	Hydrogen electrode dipping into H^{+}ions; Strip of cadmium dipping into a solution of cadmium ions; (High resistance) voltmeter/potentiometer in a workable circuit; 2 from Salt bridge; Soaked in potassium nitrate/ sodium nitrate ; Standard conditions: $298 \mathrm{~K} / 25^{\circ} \mathrm{C}, 1 \mathrm{moldm}^{-3}, 1 \mathrm{~atm}$ not open hydrogen electrode	5
ci	$\begin{array}{ll} \mathrm{Fe}^{3+}+\mathrm{e} \rightarrow \mathrm{Fe}^{2+} & 0.77 \mathrm{~V}(1) ; \\ & \\ \mathrm{Zn}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Zn} & -0.76 \mathrm{~V}(1) \quad \text { sign with } 2 \text { correct values } \tag{1} \end{array}$	3
cii	1.53 V ecf using sensible answers from $\mathrm{c}(\mathrm{i})$	1
ciii	$\mathrm{Zn} / \mathrm{Zn}^{2+}$ to $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ Zinc is the most negative / electrons flow from most negative to most positive Ecf from c(i)	1
	Total	12

