

2853 Chemistry: Polymers, Proteins and Steel

January 2004

Mark Scheme

The following annotations may be used when marking:

X = incorrect response (errors may also be underlined)

^ = omission mark

bod = benefit of the doubt (where professional judgement has been used)

ecf = error carried forward (in consequential marking)

con = contradiction (in cases where candidates contradict themselves in the

same response)

sf = error in the number of significant figures

Abbreviations, annotations and conventions used in the Mark Scheme:

/ = alternative and acceptable answers for the same marking point

; = separates marking points NOT = answers not worthy of credit

() = words which are not essential to gain credit

___ (underlining) = key words which must be used

ecf = allow error carried forward in consequential marking

AW = alternative wording ora = or reverse argument

Question	Expected Answers	Marks
1a	2 from:	2
	benzene <u>ring</u> ;	
	carboxyl/carboxylic acid;	
	amine	
bi	mirror image	1
bii	optical	1
biii	It has a chiral centre/asymmetric carbon/ carbon attached to four different groups;	1
ci	A.Only molecules of a specific shape work	5
	Plus 4 from	
	B.enzyme has an active site;	
	C.with a specific shape;	
	D.because of its tertiary structure/way it folds;	
	E.folding depends on the sequence of amino acids;	
	F.H bonds /electrostatic forces hold (substrate &) enzyme together;	
	G.substrate/reacting molecule fits into enzyme (active site)/ complementary	
	shape/enzyme substrate complex formed;	
	<u></u> ,	
	Discussion of denaturing scores 4 max	
cii	Phenol	1
d	CH ₃ CH ₃ CH ₃ CH ₃ H-C-CH ₃ H-C-CH ₃ CH ₃ H-C-CH ₃ H-C-CH ₃ H-C-CH ₃ H-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	2
	$ C_{\text{L}}$ C_{L} C_{L} C_{L} C_{L}	
	\downarrow	
	$H - C - CH^3$	
	$H_2N-\dot{C}-C-N-\dot{C}-COOH$ $H_2N-\dot{C}-C-N-\dot{C}-COOH$	
	HOHH or HOHH	
	Only amide link needs to be full structural	
	Amide link(1);	
	Rest;	
е		2
	CH ₃	
	Н-С-сн	
	I^{T} $H_{a}N - \dot{C} - COOH$ (1)	
	3 (' '	
	CH ₃ H-C-CH ₃ + H ₃ N-C-COOH (1)	
	(or NH ₃ Cl)	
	H ⁺ is removed (from solution)	
	Accept: acts like a buffer/ a base/accepts a proton/ COO reacts with H ⁺	
		15

Question	Expected Answers	Marks
2a	Ethyl methanoate =2 yl and oate =1	2
bi	1.2 = R-CH ₃ (1) 3.6 = O-CH ₂ -R (1) 4.5 = R-OH (1) No R groups 2 max	3
bii	H H H H (1) ethanol (1)	2
biii	H—COH Product Z (1) methanoic acid (1) NB Allow 2 marks if bii and iii reversed but otherwise completely correct	2
С	M_r ester= 74 (1) Amount of ester= 8.87 /74 (1) = 0.120 mol ecf Multiplication by 1000/500 to give concentration(1) Accept reverse working	3
di	All points plotted correctly 2 marks 1 error = 1mark 2 errors = 0 Smooth curve through points 1 mark	3
dii	2 half lives marked correctly on the graph (1); time labelled correctly (1); Allow 1 mark for one half life correctly drawn and labelled	2
diii	Constant half life	1
div	Draw a tangent to the curve; At t=0/ the start; Find gradient owtte	3
е	$\frac{4.60 \times 10^{-5}}{0.240} \text{(1)=} 1.92 \times 10^{-4} \text{ (1)} \text{units} \text{s}^{-1} \text{(1)}$	3
	Total	24

3a i	H ₂ N CH ₂ CH ₂ CH ₂ CH ₂ COOH Any form of structure	2
	correct functional groups(1); correct number of carbons between functional groups, (aliphatic should have correct number of H's)(1)	
aii	H N N N N N N N N N N N N N N N N N N N	2
	Allow condensed structure	
bi	Acyl chloride	1
bii	Condensation polymerisation; A small molecule (HCI) is eliminated (when monomers join) not water	2
С	more hydrogen bonds in nylon-6,6; strongest / intermolecular forces/hydrogen bonds between <u>functional</u> groups; shorter (hydro)carbon chains in nylon-6,6 (or monomer 2) / more functional groups in nylon-6,6 ORA; carbon chains between functional groups /in both monomers are the same length in nylon-6,6/functional groups line up more regularly ORA; therefore more <u>energy</u> is required to separate the chains/overcome the intermolecular forces when it melts;	4
	Total	11

Question	Expected Answers	Marks
4a	Make up to known volume with water; Add acid (must be sulphuric if named); *Alternative: Make up to a known volume with dilute acid scores 2* Until first permanent pink colour - not with indicator;	6+1
	3 from Filter solution;	
	Wash with water;	
	Dilute stock solution; Pipette sample;	
	Add MnO ₄ from a burette Repeat	
	QWC 2 consecutive sentences grammatically correct with no spelling mistakes.	
b	$MnO_4^- + 5Fe^{2+} + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$ Equation (1); Balancing (not electrons) (1)	2
С	Mr FeSO ₄ =152 (1); Mass of FeSO ₄ =106.4g (1); Percentage = 106.4 /1000 x 100% (1) = 11%	4
	Answer rounded to 2 sf (1) Ecf throughout	
di	Octahedral shape; Water molecules bonded via oxygen atoms only (no ambiguous attachments)	2
dii	Lone pair/non bonding pair of electrons	1
diii	6	1
ei	(Dirty) green (1); precipitate (1)	2
eii	Fe^{2+} (aq) + 2OH ⁻ (aq) \rightarrow Fe(OH) ₂ (s)	2
	Balanced equation (1) State symbols (1) (ignore spectators)	
eiii	Oxidation has taken place/ reacts with oxygen (precipitate) turns red/brown;	3
f	Fe ³⁺ /(hydrated) iron III oxide / iron III hydroxide formed Hexadentate/ polydentate	1
gi	Ligand exchange/displacement/substitution Allow nucleophilic substitution	1
gii	$K_{\text{stab}} = \frac{[\text{Fe}(\text{edta})^2]}{[\text{Fe}(\text{H}_2\text{O})_6^{2^+}]} [\text{edta}^4]$	2
	products /reactants (1) square brackets – charges must be inside concentration brackets(1)	
	Total	28

Question	Expected Answers	Marks
5ai	$Cd \rightarrow Cd^{2+} + 2e^{-}$	1
aii	It is less positive/ more negative than the nickel electrode	1
b	Hydrogen electrode dipping into H ⁺ ions; Strip of cadmium dipping into a solution of cadmium ions; (High resistance) voltmeter/potentiometer in a workable circuit;	5
	2 from Salt bridge; Soaked in potassium nitrate/ sodium nitrate; Standard conditions:298K/25 ⁰ C, 1moldm ⁻³ , 1 atm not open hydrogen electrode	
Ci	Fe ³⁺ + e \rightarrow Fe ²⁺ 0.77V (1); Zn ²⁺ + 2e \rightarrow Zn - 0.76V (1) sign with 2 correct values (1)	3
cii	1.53V ecf using sensible answers from c(i)	1
ciii	Zn/Zn ²⁺ to Fe ³⁺ /Fe ²⁺ Zinc is the most negative / electrons flow from most negative to most positive Ecf from c(i)	1
	Total	12